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Abstract: A linear space is a collection of objects called vectors which may be added together and 

multiplied by numbers, called scalars. Scalars are taken to be real numbers, sometimes complex numbers, 

rational numbers or generally any field. Linear spaces are the subject of linear algebra and are well 

characterized by their dimension, which roughly speaking specifies the number of independent directions 

in the space. 

 
 

1. Introduction 

The focus of this paper is on linear space,  linear hull, Hamel bases, dimensionality of linear space, some 

theorms on dimensionality of linear space. 

 

1.1 Definition : linear space [1] : A linear space over C (complex linear space) is non empty set X with a 

funtion + on  X×X  into X, and a function  .  on  C×X  into X such that for all complex λ, µ and 

elements (vectors) x, y, z in X we have  (1) x +y = y+x  (2)  x+(y+z) = (x+y)+z   (3) there  exists ɵ ɛ 

X such that x + ɵ = x  ( 4 ) there exists –x ɛ x such that x +(-x) = ɵ    (5) 1. X = x  (6) λ(x + y) = λx + 

λy  (7) (λ + µ)x  = λx + µx  (8) λ(µx) = (λµ)x. An equivalent way of defining a linear space is that it is 

an additive abelian group w.r.t addition i.e (1) to (4) holds, for which also scalar multiplication is 

defined such that (5) to (8) holds. The element ɵ is called zero, neutral element or origin in X. It is 

easy to see that ɵ and –x are unique. 

Example : (1) C is complex linear space with usual addition and multiplication for complex numbers. 

(2)ℝn
  becomes a real linear space if we define coordinatewise operations as : x +y = (x1 + y1, x2 + y2,…, 

xn + yn), λx = (λx1 ,λx2 ,… ,λxn) where x = (x1, x2,…, xn), y = (y1, y2,…, yn) and λ is real. 

(3) Let s be the  space of all  the sequence (xn) , then s becomes linear space under definitions (xn) +( yn) = 

(xn + yn), λ(xn) = (λxn) 

1.2 Linear map and isomorphism[2] : let X ,Y be linear spaces over the scalar field . A map          f : X ⇾ 

Y is called linear if  f(λx +µy) = λf(x)+µf(y) for all scalars λ,µ and all x,y ɛ  X. An isomorphism f : X ⇾ Y 

is bijective linear map then we say X and Y are isomorphic if there is an isomorphism f : X ⇾ Y 

Example: prove that f : ℝ3 ⇾ ℝ3
, given by f(x) = (x2, -x1, x2 ) is an isomorphism  

Proof: First we will prove that f is a linear map . So consider scalars λ , µ and x , y ɛ  ℝ3
 i.e      x = (x1, x2, 

x3), y = (y1, y2, y3) 

 ⇒f(λx + µy) = f(λ x1 + µ y1, λ x2 + µ y2, λ x3 + µ y3) 

                              = (λ x2 +µ y2, - (λ x1 + µ y1), λ x3 + µ y3)  

                              = (λ x2 – λ x1,λ x3) + (µ y2, -µ y1,µ y3) = λ(x2,- x1, x3) 

                              = λf(x) + µf(y) 

Next, one- one , let f(x) = f(y) ⇒f(x1, x2, x3) = f(y1, y2, y3) 

                                                        ⇒( x2,- x1, x3) = (y2,- y1, y3) 

                                                        ⇒ x2 = y2, x1 = y1, x3 = y3 

                                    We find ⇒ x = y 

Onto: Let y ɛ  ℝ3
 be such that we find  x ɛ  ℝ3

 so that f(x) = y ⇒( x2,- x1, x3) = (y1, y2, y3) 

                                                                                                  ⇒ x2 = y1 , x1 = - y2 , x3 = y3  

Thus f(-y2, y1, y3) = (y1, y2, y3) 
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⇒ f is onto. Hence f is isomorphism. 

 

2. Subspaces ,Dimensionality   
2.1 Definition: A subspace M in a linear space X is a non empty subset of X such that            λx + µy  ɛ   

M whenever x, y ɛ  M, for all λ,µ ɛ  C. We see that if {M⍺} is a family of subspaces then  ∩M⍺  is also a 

subspace. 

2.2 linear hull [3]: let S be a subset of linear space X. Then l. Hull(S), linear hull of S, is intersection of all 

subspaces containing S. Some terms such as ‘span of S’ or ‘subspaces generated by S’ are also used for 

linear Hull of S 

2.3 Linear independence: A finite subset (x1, x2, …, xn) of X is called linearly independent set iff a relation 

of the form λ1 x1 + λ2 x2 +…+ λn xn = ɵ  implies λ1 = λ2 = … = λn = 0. If a finite subset is not linearly 

independent then it will be called linearly dependent . An arbitrary subset  of X is called linearly 

independent iff every one of its finite subsets is linearly independent. 

2.4 Hamel Base: A subset B of X is called Hamel base for X iff B is linearly independent set and l 

.hull(B) = X 

2.5 Dimensionality  [4]: A linear space X is called finite dimensional iff X has a finite Hamel base i.e B is 

a finite dimensional set which is Hamel base and the number of elements in Hamel Base is called 

dimension of X. 

If X is not finite dimensional then it is called infinite dimensional. 

2.6 Theorem: Linear space C
n
 has dimension n. 

Proof: Consider the linear space C
n
 and let ei = (0,0,…,1,0,…),where 1 is in i-th place and there are zeros 

in  other n-1 places. The set (e1, e2,…, en) is called set of unit vectors in C
n
. 

Consider λ1 e1 + λ2 e2 +…+ λn en = ɵ  

⇒ λ1 (1,0,…0) + λ2(0,1,…0) +… +λn(0,0,…,1) = =0 

⇒( λ1, λ2,…, λn) = (0,0,…,0) ⇒ λ1 = λ2 = … = λn = 0 

⇒Set B = (e1, e2,… ,en) is linearly independent. 

Now, clearly l.hull(B) ⊂ C
n
, let us take x = (x1, x2,…, xn) = x1 (1,0,0,…,0) + x2(0,1,0,…,0) + …+ 

xn(0,0,…,1) = x1 e1 + x2 e2 +…+ xn en 

⇒ x ɛ   l.Hull(B) 

⇒ l.Hull(B) = C
n
 ⇒ B is Hamel Base for C

n
 .since B has n elements. 

⇒ C
n
 has dimension n. 

2.7 Theorem [5]: If X have a Hamel Base with n elements. Then any set of n + 1 elements in X is linearly 

dependent. 

Proof: If n = 1 and {b} is Hamel Base then for each x1, x2in X we have x1 =  λ1b , x2 = λ2b 

If  λ1 λ2 = 0 ⇒ λ1 = 0 or λ2 = 0 ⇒ either x1 = ɵ  or x2 = ɵ  ⇒ { x1, x2} is linearly dependent.            If  λ1 λ2 ≠ 

0 ⇒ λ1 ≠0, λ2≠0 and λ2 x1 – λ1 x2 = λ2(λ1b) - λ1 (λ2b) = 0 where λ1, λ2 ≠ 0 

⇒{ x1, x2} is linearly dependent. Thus result is true for n= 1. Consider the case n = 2, finishing the proof 

by induction. Take n = 2, B = {b1, b2} a Hamel Base . 

Let S = (x1, x2, x3) be any 3- element set in X then xi = λi1 b1 + λi2 b2 (I = 1,2,3) 

Consider the subspace M = l.Hull(b1). If all of x1, x2, x3 ɛ  M then, since {b1} is Hamel base for M, the 

case n = 1 shows that element set { x2, x3} is linearly Dependent. If however x1, x2, x3 are not all in M ⇒ 

x3 ∉ M implies λ32 ≠ 0, for otherwise x3 = λ31 b1 ɛ  M, contrary to hypothesis. For i = 1,2, define yi = xi – 

λi2 x3/ λ32 = λi1 b1 + λi2 b2 – λi2(λ31 b1 + λ32 b2)/ λ32  ɛ  M                from case n = 1, two element set { y1, y2} 

is linearly dependent i.e there exist u1, u2 not both zero such that  u1 x1+ u2 x2 + λx3 = ɵ  where λ depends on 

u1, u2, λ12 , λ22 , λ32 .Hence we see S is linearly dependent which proves theorem for n = 2. Thus by using 

idea of the case n = 2, it is easy to finish the proof inductively. 

2.8 Theorem: Let X be finite dimensional. Then all the Hamel Bases for X have the same number of 

elements.  

Proof: Let B is a Hamel Base with n elements and let B’ be another Hamel Base for X. B’ must be finite , 

otherwise it could have n + 1 linearly independent elements, contrary to theorem 2.7. If B’ has m 



                          VVoolluummee  88  ••  IIssssuuee  22        MMaarrcchh  22001177  --  SSeepptt  22001177  pppp..  110044--110066                  aavvaaiillaabbllee  oonnlliinnee  aatt      wwwwww..ccssjjoouurrnnaallss..ccoomm 

 
 

AA  UUGGCC  RReeccoommmmeennddeedd  JJoouurrnnaall                  Page| 106 
 

elements, then we have to prove that m = n . For if m > n or m <  n, we contradict theorem 2.7, since B,B’ 

are both bases. 

2.9 Theorem: If X is finite dimensional with dimension n, then X is isomorphic to C
n
. 

Proof: Since X is finite dimensional with dimension n there is Hamel Base (say)                   {b1, b2,…, 

bn}. If x ɛ  X ⇒ x = λ1 b1 + λ2 b2 +…+ λn bn   for some scalars λi .The λi are unique ,for if  

x = u1 b1 + u2 b2 +…+ un bn 

                                               ⇒ λ1 b1 + λ2 b2 +…+ λn bn  =  u1 b1 + u2 b2 +…+ un bn 

                                               ⇒ (λ1 - u1) b1 + (λ2 – u2) b2 +…+( λn – un) bn = ɵ  ⇒λi= ui (i≤i≤n) 

By linear independence of bi. Now, define a map f : X ⇾ C
n
 as:  let x ɛ  X  

⇒   x = λ1 b1 + λ2 b2 +…+ λn bn  for unique scalars λi 

Now, (λ1, λ2,…, λn) ɛ   C
n
 

⇒define f(x) = (λ1, λ2,…, λn) is well defined map. Clear f is bijective and it is easy to check f(⍺x + βy) = 

⍺f(x) + βf(y) for scalars ⍺,β and x,y ɛ  X . Hence f is an isomorphism . 

 

3. Convex, balanced, absolutely convex, absorbent 

3.1 Definition [6]: let E be a non-empty subset of linear space X. 

1. E is called convex iff x,y ɛ  E and λ + µ = 1, with λ ≥0, µ ≥0, imply λx + µy ɛ  E 

2. E is called balanced iff x ɛ  E and ǀ λǀ  ≤ 1 imply λx ɛE 

3. E is called absolutely convex iff x,y ɛ  E and ǀ λǀ  + ǀ µǀ  ≤ 1 imply λx + µy  ɛ  E 

4. E is called absorbent iff to every x ɛ  X there corresponds a number p = p(x) > 0 such that if ǀ λǀ  

≤ p then λx ɛ  E 

3.2 Theorem [7]: Denote by d the metric on C
n
  given by d(x,y) =   for each x = (x1, 

x2, …, xn), y = (y1, y2, …, yn) in C
n 

 Then any closed sphere S[a,r] = (x ɛ  C
n
 /d(x,a) ≤r) of centre a ɛ  C

n
 and radius r > 0, is a convex subset of 

C
n
 

Proof: Take x,y ɛ  S[a,r], λ +µ = 1, λ ≥ 0, µ ≥0 then d(x,a) ≤ r, d(y,a) ≤r 

Now, d(λx + µy, a) =   

 =   =   

≤   +  =λ d(x,a) + µ d(y,a) ≤ λr +µr =r  
On using Minkowski’s inequality. Hence we have show that d(λx +µy,a) ≤r which implies λx +µy ɛ  

S[a,r]  so S[a,r] is convex. 
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